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Anyon Physics and the Topology of Dark Matter 

Ervin Goldfain 

Abstract 

Matching current observations on non-baryonic Dark Matter (DM), Cantor Dust was recently conjectured 

to emerge as large-scale topological structure formed in the early stages of cosmological evolution. The 

mechanism underlying the formation of Cantor Dust hinges on dimensional condensation of spacetime 

endowed with minimal fractality. It is known that anyons are quasiparticles exhibiting anomalous statistics 

and fractional charges in 2+1 spacetime. This brief report is a preliminary exploration of the intriguing 

analogy between anyons and the Cantor Dust picture of DM.  
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1. Introduction 

Rooted in the Renormalization Group program of Quantum Field Theory, the minimal 

fractal manifold (MFM) describes a spacetime continuum having arbitrarily small 

deviations from four-dimensions ( 4 1D = −  ). This fine structure of spacetime is 

conjectured to set in near or above the Fermi scale. The emergence of the MFM sheds 

light on many ongoing puzzles of the Standard Model (SM), while meeting all consistency 

requirements mandated by effective QFT in the conformal limit 0 = . The underlying 

rationale, conceptual benefits and implications of the MFM for the development of 

Quantum Field Theory and the SM are reported elsewhere (refs. 1-12 of [1]). 

Recently, a proposal was put forward according to which DM amounts to Cantor Dust, a 

large-scale topological structure formed in the early Universe. The mechanism underlying 
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the onset of Cantor Dust hinges on dimensional condensation of spacetime endowed with 

minimal fractality. Condensed matter physics views anyons are quasiparticles exhibiting 

anomalous statistics and fractional charges in 2+1 spacetime. This brief report is a 

preliminary exploration of the analogy between anyons and the Cantor Dust model of DM. 

We emphasize from the outset that the ideas discussed here are in their infancy and in 

need for independent validation. The reader is caution that the sole intent of this paper is 

to lay the groundwork for follow-up model building and simulations. 

2. Anyons in 2+1 spacetime dimensions 

The concept of “exchange statistics” in Quantum Mechanics relates to the phase picked 

up by a wavefunction upon exchanging a pair of identical particles. It has been long known 

that the exchange statistics of identical particles in 2+1 spacetime deviates from the spin-

statistics theorem of QM in 3+1 dimensions and signals the transition of quantum 

particles to anyons. For the sake of clarity and accessibility, below is a short pedagogical 

introduction to the physics of anyons. 

Following [2] in detail, let two indistinguishable particles be located at initial positions 

1 2( , )i ix x and let their final positions be 1 2( , )f fx x at some later time T . The path integral 

formalism requires summing up all possible paths involved in the computation of the 

amplitude 1 2 1 2, exp( ) ,f f i ix x iHT x x . In 3-dimensional space, the worldlines of the two 

particles braid around each other a number of times n . Braiding implies a partition of 

paths into distinct classes that cannot be topologically deformed into each other. As a 

result, the corresponding amplitudes do not interfere quantum mechanically, which 

means that to each class one can associate an additional phase factor exp( )ni , besides 
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the usual factor determined by the action. If one particle goes around the other through 

an angle k , the additional phase factor picked up by this path represents some function 

of k , namely [ ( )]kexp f  . For two successive paths, the extra phase factor has to 

comply with the composition law 1 1exp[ ( )] exp[ ( )]exp[ ( )]k k k kif i f if   + + + =   , 

which means that ( )f   must be linearly dependent on  . It follows that in 2+1 

spacetime and for a pair of particles (1) and (2), the additional phase factor picked up by 

the quantum amplitude upon anti-clockwise braiding is given by 12exp[ ( ) ]i    , where 

  is an arbitrary real parameter. Likewise, the extra phase factor acquired by the quantum 

amplitude upon clockwise braiding is 12exp[ ( ) ]i   −  . The upfront distinction between 

the phase sign in clockwise and anti-clockwise braiding signals a violation of parity ( )P  

and time reversal symmetry ( )T  [2].  

If 12 = , the two additional phase factors reduce to the familiar expressions exp( )i−  

and exp( )i , typically associated with the indistinguishability of identical particles in 3+1 

spacetime. In that context, if (1, 2)  denotes the wavefunction of the system, the exchange 

of (1) and (2) leaves the action unchanged up to an arbitrary phase  , namely,    

 (1,2) exp( ) (2,1)i =    (1) 

By repeating the exchange, the wavefunction returns to the original state while getting 

multiplied by exp( )i . It follows that exp(2 ) 1i =  , exp( ) 1i =   and thus 

 (1, 2) (2,1) =    (2) 
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The (+) sign corresponds to 2k =  ( 0,1,2,...k =  ) and denotes bosons, while (-) 

corresponds to (2 1)k = +  and denotes fermions.  Now bring back again the 2+1 

spacetime and consider an ensemble of , 1, 2,...,i j N=  anyons undergoing the exchange 

operation. A straightforward generalization of the braiding phase factors amounts to, 

respectively, [3] 

 exp( )iji j
i



 

−    anti-clockwise braiding (3a) 

 exp( )iji j
i



 

   clockwise braiding (3b) 

Hence, the exchange statistics of anyons is embodied in the generic relationship 

 (1,2,... , ,..., 1, ) exp( ) (1,2,... , ,... 1, )i j N N i j i N N − =    −   (4) 

in which 

 i ji j




 
 =    (5) 

If N →  and taking the spectrum of phases i j  to be continuous, the discrete variables 

( , Zi j + ) map to ( , R   ) and the sum in the right hand side of (5) changes to  

 i ji j

 
 

 
 =   =   (6) 

where 

 ( , )d d
 

     


=    (7) 
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Furthermore, (6) makes possible the local definition of the statistics parameter   in  -

space according to 

 ( )
d

d
  




=   (8) 

Topological field theory provides the proper field theoretic description of anyons in 2+1 

spacetime. The non-relativistic limit of this framework involves Schrödinger bosons   

minimally coupled to a gauge potential a  as in [2, 3] 

 2

0

1 1

2 4
DL i D a a

m



      


+ += + +    (9) 

in which D ia  =  +  are covariant derivatives, and   is the total anti-symmetric 

symbol in 2+1 spacetime. The equations for a  are given by 

 
1

2
j a 

 


=    (10) 

where j  is the conserved current associated with the Schrödinger bosons in (9). In terms 

of the anyon density ( )r = , (10) takes the form 

 2ij

i ja  =   (11) 

which explicitly shows that   acts as the source of the gauge potential. If   has a 

continuous spectrum defined by (8), (11) may be formally extended to 

 ( ) 2 ( ) 2ij

i j

d
a

d
     




 = =   (12) 
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which highlights the local definition of a  in  -space. 

An extension of the ordinary topological field theory is provided by the Maxwell-Chern-

Simons (MCS) Lagrangian, in which the third term of (9) is supplemented by the Maxwell 

term [3] 

 
2

1

4
f f

g



   (13) 

with f a a    =  −  . It is apparent that this term decouples from the Lagrangian in the 

limit g →  where one recovers the ordinary topological field theory. Considering only 

the gauge sector of this model ( , 0g j  = ) 

 
2

1 1

4 4
gaugeL f f a a

g

 

   


= − +    (14) 

yields the following equation of motion for the Maxwell field  

 
4

2
0

4

g
f f

  


  + =   (15) 

where the dual field tensor is given by 

 
1

2
f f 

=   (16) 

Equation (15) implies that photons in the MCS theory acquire mass on account of the field 

coupling g  and statistics phase  . Since the Maxwell term dominates at large distances, 

one expects g    and thus the gain in photon mass amounts to 
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2

2

g
m


=  ,  ,g    ≠0   (17) 

This mass generation mechanism has a clear topological underpinning and is manifestly 

different from the symmetry breaking process driven by the Higgs scalar. It is not, 

however, in conflict with SM as it only occurs in 2+1 spacetime.  

3. Anyons embedded in minimal fractal spacetime   

So far, building the anyon theory contained in (1) to (17) was carried out in 2+1 

dimensions. A natural question is then: How does one extrapolate the anyon formalism 

on the minimal fractal manifold (MFM), which represents a spacetime background 

endowed with 4D = −  ( 1   ) dimensions [4–9]. 

Posing this question is relevant in a more general context, namely in the long-term 

analysis of Renormalization Group flows approaching strange attractors and exhibiting 

chaotic mixing and diffusion [10-12]. Given that the dynamics of MFM is typically 

formulated using fractional operators and/or fractional functions, a reasonable “leading-

order” approximation may be developed by substituting the exponential factor of (1) - (4) 

with its fractional counterpart. Following [13], the fractional exponential function is 

accordingly chosen to be  

 

1

1

exp( ), 0
( , )

exp( ), 0

i t
e t

i t






 


 







− 
=


  (18) 
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where 1 1 (3 )s sD = − = − − , corresponding to 3 1s sD = −   deviations from three 

spatial dimensions and where parameters ( , t ) play the role of “angular velocity” and 

“braiding time”. In light of (18), (6) and (7) are upgraded to, respectively, 

 
1
1

1
( ) s

s s s
d t

     


− = =   (19) 

 ( , )
s s

d d 

 

     


=    (20) 

in which  

 
1
1

( , ) ( , ) ( , )s

s
t



      −
 =    (21) 

and 

 
1
1

( , ) [ ( , ) ( , )]s

s s
d d d t d d



            −
=  =    (22) 

Note that (19) and (21) contain locally defined angular velocities ( , )  and braiding 

times ( , )t   . Also note that, in general, angular velocities entering (19) and (21) are 

assumed to be different, i.e.,   ≠ ( , )   for any pair ( , )  . By (19) and (20), the analog 

expression of (8) on the MFM is given by 

 ( ) s

ss

s

d

d



 



  



=   (23) 

Since 1 ( ) 11 3s sD  = − = − − , the frequency entering (18) may be approximated as 
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1 1 (1 )

(1 ) (1 ln ) ( ln )
s s

s
s s

            
+

− =  + = +=     

and enables a convenient formulation of (19) and (21), namely  

 ln
s s t    =+   (24) 

 ( , ) ( , ) ( , ) ln ( , ) ( , )
s s t             =  +     (25) 

It is apparent from (19) to (25) that the standard anyon theory in 2+1 dimensions is 

recovered by letting 3s sD = −  drop to zero. Likewise, the analog approximation of 

photon mass (17) on the MFM can be presented as 

 
2 2

1

, ( )
2 2

s

s

s s

dg g
m

d



 

   

−


= =   (26) 

Ordinary massless photons correspond to singular slopes of the phase angle (19) in  −  

space, 
s s

d d  → . In a broader interpretation, it is tempting to speculate that an 

entire hierarchy of gauge boson masses may be derived from (26) upon letting the 

dimensional parameter 3s sD = −  sweep a progressive sequence of values ordered 

according to the Feigenbaum scenario [4, 24].  

4. Further extensions  

Among the many questions open for follow-up clarifications, we mention the following:   

1) How does the spin-statistics connection change in the presence of chaotic mixing, a 

hallmark feature of strange attractors? In particular, how does quantum entanglement 

enter the picture when describing swapping of anyons in minimal fractal spacetime? 
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2) Can (17) and (26) supply a viable explanation for the recently claimed discovery of 

massive boson X17 [20]? (excluding, of course, the effect of systematic errors or faulty 

theoretical premises) 

3) How does our approach relate to many contemporary topics of condensed matter 

theory such as (but not limited to) fractional quantum Hall effect, anyon condensation, 

topological phases of matter, string-net condensation, quantum criticality? 

To give a single example, the statistics parameter in the analysis quantum Hall fluids is 

given by 

 





=  ,   
1

, 1,2,...
2 1

k
k

 = =
+

  (27) 

in which the filling factor   takes on fractional values. Is there a meaningful connection 

between (23) and (27) that can be deployed in numerical simulations of DM?   

4) How does our approach change upon deploying the full formalism of fractional calculus 

and fractional vector calculus, which is entirely non-local (see, e.g. [23])?  

5) One can make the case that the phase angle (19) contains either “fast” angular 

frequencies for short time spans (UV regime) or “slow” angular frequencies for long time 

spans (IR regime). Either way, the term describing the contribution of the MFM 

lns t    may be interpreted as being asymptotically undefined in the limit 

0, , 0s t → → →  or 0, 0,s t → → → . Likewise, it would be instructive to explore 

the regime where the angular frequency 
1
  becomes singular and the phase 

1

exp[ ]i t  undergoes large fluctuations for finite time intervals  0t  . 

6) How does this approach relate to the superfluid model of DM and its anisotropy [21]? 
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For future reference, we close by tabulating an helpful (albeit preliminary) analogy 

between anyons in 2+1 spacetime and anyons on the MFM. 

 

  Anyons in 2+1 dimensions Anyons in minimal fractal spacetime 

Breaking P and T symmetries by 
braiding operations 

Breaking P and T symmetries through 
fractional dynamics [14] 

Long-range phase interactions 
through topological field theory 

Long-range coupling through fractional 
dynamics [4, 14, 23] 

Topological field theory is 
metric independent [2] 

Fractional dynamics in flat spacetime is dual 
to conventional dynamics in curved 

spacetime [14-16] 

Charge fractionalization in 
quantum Hall fluids [2] 

Charge fractionalization through fractional 
dynamics [17] 

Massive photons in the MCS 
theory per (17) and (26) 

Mass generation through the minimal fractal 
geometry of spacetime [4, 11, 19, 22] 

Topological condensation of 
quasiparticles 

Higgs scalar as weakly-coupled topological 
condensate of gauge bosons [4, 18] 
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